The Nogo-66 receptor: focusing myelin inhibition of axon regeneration.

نویسندگان

  • Aaron W McGee
  • Stephen M Strittmatter
چکیده

CNS myelin inhibits axonal outgrowth in vitro and is one of several obstacles to functional recovery following spinal cord injury. Central to our current understanding of myelin-mediated inhibition are the membrane protein Nogo and the Nogo-66 receptor (NgR). New findings implicate NgR as a point of convergence in signal transduction for several myelin-associated inhibitors. Additional studies have identified a potential coreceptor for NgR as p75(NTR), and a second-messenger pathway involving RhoA that inhibits neurite elongation. Although these findings expand our understanding of the molecular determinants of adult CNS axonal regrowth, the physiological roles of myelin-associated inhibitors in the intact adult CNS remain ill-defined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nogo-66 Receptor Prevents Raphespinal and Rubrospinal Axon Regeneration and Limits Functional Recovery from Spinal Cord Injury

Axon regeneration after injury to the adult mammalian CNS is limited in part by three inhibitory proteins in CNS myelin: Nogo-A, MAG, and OMgp. All three of these proteins bind to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth in vitro. To explore the necessity of NgR for responses to myelin inhibitors and for restriction of axonal growth in the adult CNS, we generated ngr(-/-) mice. Mice...

متن کامل

A TNF Receptor Family Member, TROY, Is a Coreceptor with Nogo Receptor in Mediating the Inhibitory Activity of Myelin Inhibitors

A major obstacle for successful axon regeneration in the adult central nervous system (CNS) arises from inhibitory molecules in CNS myelin, which signal through a common receptor complex on neurons consisting of the ligand-binding Nogo-66 receptor (NgR) and two transmembrane coreceptors, p75 and LINGO-1. However, p75 expression is only detectable in subpopulations of mature neurons, raising the...

متن کامل

TAJ/TROY, an Orphan TNF Receptor Family Member, Binds Nogo-66 Receptor 1 and Regulates Axonal Regeneration

Myelin-associated inhibitory factors (MAIFs) are inhibitors of CNS axonal regeneration following injury. The Nogo receptor complex, composed of the Nogo-66 receptor 1 (NgR1), neurotrophin p75 receptor (p75), and LINGO-1, represses axon regeneration upon binding to these myelin components. The limited expression of p75 to certain types of neurons and its temporal expression during development pr...

متن کامل

Nogo-A interacts with the Nogo-66 receptor through multiple sites to create an isoform-selective subnanomolar agonist.

Nogo is a myelin-derived protein that limits axonal regeneration after CNS injury. A short hydrophilic Nogo-66 loop between two hydrophobic domains of Nogo binds to a Nogo-66 receptor (NgR) to inhibit axonal outgrowth. Inhibition of axon outgrowth and cell spreading by a second Nogo domain, termed Amino-Nogo-A, is thought to be mediated by a distinct receptor complex. Here, we define a novel No...

متن کامل

AMIGO3 Is an NgR1/p75 Co-Receptor Signalling Axon Growth Inhibition in the Acute Phase of Adult Central Nervous System Injury

Axon regeneration in the injured adult CNS is reportedly inhibited by myelin-derived inhibitory molecules, after binding to a receptor complex comprised of the Nogo-66 receptor (NgR1) and two transmembrane co-receptors p75/TROY and LINGO-1. However, the post-injury expression pattern for LINGO-1 is inconsistent with its proposed function. We demonstrated that AMIGO3 levels were significantly hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Trends in neurosciences

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2003